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Abstract

Surgical tool presence detection and surgical phase recognition are two funda-
mental yet challenging tasks in surgical video analysis and also very essential
components in various applications in modern operating rooms. While these two
analysis tasks are highly correlated in clinical practice as the surgical process
is well-defined, most previous methods tackled them separately, without mak-
ing full use of their relatedness. In this paper, we present a novel method by
developing a multi-task recurrent convolutional network with correlation loss
(MTRCNet-CL) to exploit their relatedness to simultaneously boost the per-
formance of both tasks. Specifically, our proposed MTRCNet-CL model has
an end-to-end architecture with two branches, which share earlier feature en-
coders to extract general visual features while holding respective higher lay-
ers targeting for specific tasks. Given that temporal information is crucial for
phase recognition, long-short term memory (LSTM) is explored to model the
sequential dependencies in the phase recognition branch. More importantly, a
novel and effective correlation loss is designed to model the relatedness between
tool presence and phase identification of each video frame, by minimizing the
divergence of predictions from the two branches. Mutually leveraging both low-
level feature sharing and high-level prediction correlating, our MTRCNet-CL
method can encourage the interactions between the two tasks to a large extent,
and hence can bring about benefits to each other. Extensive experiments on a
large surgical video dataset (Cholec80) demonstrate outstanding performance
of our proposed method, consistently exceeding the state-of-the-art methods by
a large margin (e.g., 89.1% v.s. 81.0% for the mAP in tool presence detection
and 87.4% v.s. 84.5% for F1 score in phase recognition). The code can be found
on our project website.
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1. Introduction

With the advancements in medicine and information technologies, the op-
erating room (OR) has undergone tremendous transformations evolving into
a highly complicated and technologically rich environment (Cleary & Kinsella
(2005); James et al. (2007); Lalys & Jannin (2014); Bouget et al. (2017)). These
transformations allow the execution of more complex procedures and also in-
crease the amount of information available in modern OR. To better tackle this
new OR scenario, the context-aware systems (CAS) have gradually been de-
veloped to provide detailed comprehension of rich information and contextual
support to the clinicians (Bricon-Souf & Newman (2007); Dergachyova et al.
(2016)). With interpreting the operation procedure and tool usage, automated
surgical phase recognition and tool presence detection serve as the primary func-
tions in CAS and such accurate systems are expected to be highly demanded
(Padoy et al. (2012); Lalys & Jannin (2014); Wesierski & Jezierska (2018)).

Specifically, automatically recognizing the surgical phase and tool enables
CAS to assist clinicians during two periods: intra-operation and post-operation.
The intra-operative recognition is able to generate real-time warning for clini-
cians by detecting rare cases and unexpected variations (Bouget et al. (2015)),
and to support decision making of junior surgeons through timely communica-
tion within surgical team (Quellec et al. (2014, 2015); Forestier et al. (2015)).
The online recognition can also help to improve OR resource management. By
knowing which surgical workflow is currently occurring and which tool is uti-
lized, the completion time of surgery can be estimated. Therefore, it can facili-
tate relevant clinical staff to prepare the following patient in advance, resulting
in minimal patient waiting time and maximal OR throughput (Twinanda et al.
(2017); Bouget et al. (2017)). In addition, the post-operative recognition can en-
hance the efficiency of surgical report documentation and video database index-
ing, which are currently tedious and time-consuming manual jobs. The indexed
record of surgical procedure can further facilitate the surgeon training, review
and skill assessment (Zappella et al. (2013); Ahmidi et al. (2017); Sarikaya et al.
(2017)). The fully annotated database can also be utilized to generate the sta-
tistical information, which is beneficial for the surgical workflow optimization
(Bhatia et al. (2007); Wesierski & Jezierska (2018)).

However, developing automated methods to recognize tool presence and sur-
gical phase from surgical videos is very challenging. First, there is a large vari-
ety of surgical tools with some abnormal cases, such as partial appearances and
overlap of multiple tools. Second, complicated surgical scenes lead to limited
inter-phase variance while high intra-phase variance. Lastly, observed surgical
scenes are often blurred due to the camera motion and gas generated by tools,
and even completely occlude when blood stains the camera lens. Extra noise
and artifacts introduced by consequent lens cleaning process make the recog-
nition tasks even harder. To meet these challenges, early methods relied on
handcrafted features such as gradient magnitude (Blum et al. (2010)), combi-
native descriptors (Lalys et al. (2012)), and intensity values (Zappella et al.
(2013)). However, the empirical design of these low-level features heavily de-
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Figure 1: Illustration of definition and correlation of each phase and tool presence in surgical
videos, taking the cholecystectomy procedure as an example.

pends on domain knowledge and would be insufficient to represent the compli-
cated characteristics of surgical videos. With the revolution of deep learning,
many attempts of adapting convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs) on surgical video analysis have been explored and
achieved promising performance (DiPietro et al. (2016); Sahu et al. (2017); Jin
et al. (2018)). Unfortunately, most existing deep learning based methods ad-
dressed the tool and phase recognition tasks independently, without considering
the intrinsic association between them.

According to the regulation of surgery procedure, surgeons are requested to
perform specified operations with corresponding sets of instruments for different
surgery phases. Therefore, there exists a high correlation between the surgical
phase and tool usage. Taking the cholecystectomy procedure as an example (see
Figure 1), hooks are often used to perform the dissection operations; clipper and
scissors are required in clipping and cutting stage. In fact, many previous works
directly employed binary instrument usage signals to perform phase recognition,
which manifested the benefit of tool information to phase recognition (Padoy
et al. (2012); Forestier et al. (2015)). Recently, Twinanda et al. (2017) imple-
mented a multi-task framework with shared early layers and incorporated tool
information in the feature learning process, which firstly achieved joint tool and
phase recognitions. The promising performance demonstrates that effectively
leveraging such relatedness plays an essential role in improving both tasks, i.e.,
tool presence detection and phase recognition.

The correlation between the multiple tasks is often quite complicated. For
example, in surgical videos, the same tool may present in different phases, while
an operation phase may involve a variety of instrument combinations. To this
end, the shortcomings existing in the aforementioned approaches may fail to pre-
cisely capture the correlation. For example, the method proposed by Twinanda
et al. (2017) uses hidden Markov model (HMM) to enforce the temporal con-
straints on the phase prediction, instead of introducing sequential information
in the network training procedure, which plays a key factor in tackling video-
based tasks. Therefore, how to precisely capture and sufficiently leverage the
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close yet subtle correlations between these two tasks remains a problem to be
further investigated.

In this paper, we present a novel method, i.e., multi-task recurrent convolu-
tional network with correlation loss (MTRCNet-CL), to simultaneously tackle
tool presence detection and phase recognition tasks. The proposed end-to-end
framework is capable of comprehensively alleviating the shortcomings of other
surgical video analysis approaches and improve the ability of correlation cap-
ture. The source codes and relevant supporting documents can be found on our
project website1. Our main contributions are summarized as follows:

• We develop a novel multi-task recurrent convolutional network for surgical
video analysis. It consists of two branches, which share early convolutional
layers, and are well designed for solving particular tasks at respective
higher layers. Given that temporal information is crucial for phase recog-
nition, we employ a recurrent unit, i.e. long-short term memory (LSTM),
in this branch to encode sequential dependencies. In this way, we form a
multi-task learning model composing of CNN and RNN modules.

• We propose a correlation loss to provide additional regularization inspired
from domain knowledge, by minimizing the divergence of probability pre-
dictions for the two tasks. This mechanism is to penalize the model, when
the correlated tasks resulting in conflicting predictions. The features which
are discriminative for each task can have dynamic interactions at hierarchy
during the training process, presenting a novel style of multi-task learning.

• We extensively validate our proposed MTRCNet-CL on a large endoscopy
surgical video dataset (Cholec80). Our method outperforms existing state-
of-the-art approaches significantly and consistently (e.g., 89.1% v.s. 81.0%
for the mAP in tool presence detection and 87.4% v.s. 84.5% for F1 score
in phase recognition), demonstrating outstanding efficacy of our developed
multi-task learning strategy for surgical video analysis. The source code
and relevant supporting documents will be released and publicly available.

2. Related Work

2.1. Surgical Video Analysis

Most previous works treated tool presence detection and phase recognition
from surgical video as two independent tasks. The literature presenting to solve
automatic tool presence detection problem in the computer assisted interven-
tion community is relatively limited. The early approaches were based on the
low-level handcrafted features, such as the combination of shape, color and tex-
ture features (Lalys et al. (2012)). Recently, researchers have been dedicated
to employing CNNs to learn more discriminative visual features. Some meth-
ods proposed to recognize each kind of tools independently. For example, Luo

1https://github.com/YuemingJin/MTRCNet-CL

4

https://github.com/YuemingJin/MTRCNet-CL


et al. (2016) utilized multiple CNNs to extract the visual feature, but the per-
formance is not satisfactory since such methods ignored the intrinsic association
among different tools. Others formulated this task as a multi-label classification
problem and leveraged the underlying relationship of tools. Wang et al. (2017)
integrated VGG and GoogleNet to take advantage of the deep CNN model en-
semble. Sahu et al. (2017) paid attention to analyzing the imbalance on tool
co-occurrences and exploited stratification techniques during the network train-
ing process. Choi et al. (2017) developed a real-time detection CNN model
based on YOLO. Al Hajj et al. (2017) proposed to leverage sequential informa-
tion to detect surgical tools in cataract surgery videos, which used optical flow
to fuse the multi-image during the network training.

The methods which proposed to recognize phase were mainly divided into
three categories according to what types of data to be utilized, including man-
ually annotated signal, sensor signal and the combination of them. In addition,
video data as the main sensor signals can be further separated into external
OR video and endoscope video used in minimally invasive surgery. First, many
studies leveraged various manually annotated data to recognize surgical phases.
For example, Padoy et al. (2012) exploited binary instrument usage signal and
utilized statistical modeling based on dynamic time warping (DTW) and HMMs
to analyze the data. Forestier et al. used tool usage information, the anatomi-
cal structure, and the surgical motion which are collectively known as surgical
triplets to represent frame information. Decision tree and DTW combined with
a clustering algorithm were employed to process the data (Forestier et al. (2013,
2015)). These manually annotated signals can represent some typical features of
phases, therefore methods based on them can achieve quite good performances.
However, this kind of signals needs additional workload which is time-consuming
and tedious for surgeons. Moreover, it cannot be obtained in real time, therefore
aforementioned methods are invalid when doing a real online surgery. In this
regard, some previous works were dedicated to presenting methods which are
solely based on the live sensor signal. Klank et al. (2008) presented a feature
extraction mechanism based on genetic programming to automatically extract
visual features from surgical video. Support vector machines were then used
to classify the phases of cholecystectomy surgery from the extracted feature
vectors. However, the average accuracy is only around 50% in some cases due
to the low level extracted features. Considering that the methods solely based
on visual features cannot reach the satisfying performance, some researchers
presented approaches to leverage the live sensor signal and manually annotated
signal simultaneously. Padoy et al. (2008) proposed to combine the tool us-
age signals and visual cues computed from two videos, including OR video to
record the surgery environment and endoscope video. A left-right HMM was
constructed from these signals. Blum et al. (2010) found a projection function
from visual features of video frames to tool usage signals. HMM and DTW
were then utilized to model sequential dependencies. This method can be used
in test time because the tool signals are not needed anymore as long as the pro-
jection function is obtained. However, the tool annotations are still needed in
the learning process. How to effectively and efficiently recognize surgical phase
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still remains an open problem.
With the advancements of high-level feature learning, many studies tended

to leverage deep CNNs and RNNs to extract feature solely from online sensor
signal. Much more discriminative features contribute to the compelling per-
formance of phase recognition and meanwhile, alleviate the challenge of high
annotation workload. DiPietro et al. (2016) used RNN to model the robot
kinematics and achieved an accurate phase recognition for robotic surgery. Lea
et al. (2016) employed temporal filters to convolve the sequential stacked spa-
tial features extracted from CNN. DTW is then used as a classifier to recognize
phase based on the spatio-temporal feature. Jin et al. (2018) proposed a unified
framework called SV-RCNet, where CNN is utilized to extract visual features
from encoscopy videos, and RNN is seamlessly integrated to model the tempo-
ral information. The network jointly optimized the visual representations and
temporal dynamics, and achieved promising performance. Yengera et al. (2018)
presented a self-supervised pre-training approach based on remaining surgery
duration prediction for addressing surgical phase recognition with less annotated
data.

2.2. Multi-task Learning

Aforementioned methods tackled tool presence detection and phase recogni-
tion tasks separately, which cannot take the advantage of complementary infor-
mation of these two tasks to benefit each other. In addition, from some works of
phase recognition (Blum et al. (2010); Padoy et al. (2012); Lalys et al. (2013);
Yu et al. (2019)), it is observed that tool usage information is beneficial for
recognizing phase as the input signal. Therefore, with joint learning the phase
recognition and tool presence detection, tool usage information can be indirectly
used for the improvement of phase recognition through the shared features.

Recently, effectively leveraging the close correlations between multiple tasks
have achieved great success in natural data analysis (Mahmud et al. (2017);
Hinami et al. (2017); Gebru et al. (2017); Liu et al. (2017)). For example,
Mahmud et al. (2017) presented a multi-task network with three streams. The
extracted features were concatenated for jointly inferring the activity labels and
starting time. Hinami et al. (2017) proposed to learn a multi-task Fast R-CNN
for object detection, action and attribute classification. The network shared
features in earlier layers and employed a fully connected layer as a classifier in
each branch. Although achieving outstanding performance, the former method
lacks shared weights to enable dynamic interaction. While in the latter one, the
branches are not well designed based on the task characteristics, and hence the
intrinsic relatedness is not sufficiently exploited.

Many studies in medical image analysis domain have also corroborated the
importance of harnessing the relatedness to simultaneously improve performance
of both tasks. Multi-task learning has been demonstrating state-of-the-art re-
sults on many challenging tasks, such as cardiac left ventricle full quantification
(Xue et al. (2017)), pulmonary nodule classification and localization regres-
sion (Dou et al. (2017)), nuclei detection and fine-grained classification (Zhou
et al. (2017)), surgical instrument segmentation and localization (Laina et al.
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(2017)), synthetic CT generation and organs-at-risk segmentation (Bragman
et al. (2018)), pancreas localization and segmentation (Roth et al. (2018)). For
surgical video analysis, Twinanda et al. (2017) recently presented a multi-task
network called EndoNet to simultaneously carry out the two tasks of tool de-
tection and phase recognition. The network consisted of two branches that
shared the early layers to extract the visual features. Hierarchical HMM was
subsequently applied to enforce the temporal constraints to refine the phase
recognition results. Although this work has achieved outstanding performance,
temporal dependencies, which are crucial for phase analysis, are detached from
the unified framework. Zisimopoulos et al. (2018) proposed to first train a
ResNet to recognize tool presence and then combine the tool binary predictions
and tool features from the last layer to train a RNN for phase recognition, which
achieved promising results in cataract video analysis. Very recently, Nakawala
et al. (2019) present a Deep-Onto network which integrates deep models with
ontology and production rules. The method can recognize different types of sur-
gical contexts, including phase, tool and action. However, it is lacking in careful
design of task-specific branches, which uses the multilayer perceptron for each
task. Therefore, there is still room for further investigation and improvement
in terms of correlation modeling and temporal information involving.

In addition, many works have attempted to learn the relationship through a
matrix space or utilize additional regularization to increase the model learning
capability. For example, Augenstein et al. (2018) propose to leverage unlabeled
or auxiliary data for better text classification. They first designed a label em-
bedding layer to learn a relationship space between disparate labels. Based on
it, a label transfer network is employed to leverage the predictions of the auxil-
iary tasks to estimate a label for the target task. Bachman et al. (2014) present
an agreement regularizer to minimize variation of pseudo-ensemble models for
improving sentiment analysis. They first obtain several pseudo-ensemble child
models by perturbing the parent model through some noise process. Then they
examine the relationship of pseudo-ensembles by the agreement regularizer and
penalize the whole model.

3. Methods

Aiming to sufficiently take advantage of the natural relatedness of tool pres-
ence detection and surgical phase recognition tasks, we present a novel frame-
work with two branches which share the early feature encoders and respectively
hold higher layers for specific tasks. The LSTM unit is embedded in the phase
branch, which introduces the sequential dynamic into the unified framework. In
addition, we propose a correlation loss to minimize the divergence of the distri-
butions of predicted probabilities, thus enforcing the consistency of outputs for
the two correlated tasks. The overview of our proposed MTRCNet-CL is shown
in Figure 2.
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Figure 2: An overview of the proposed MTRCNet-CL for joint tool presence detection and
phase recognition from surgical videos in a unified end-to-end framework. LSTM networks
are illustrated by diagrams to indicate how temporal information is modeled.

3.1. Multi-task Learning Network Architecture

To meet the challenges of surgical video recognition, in the shared backbone
part, we employ a 50-layer residual convolutional network to extract represen-
tative high-level features (He et al. (2016)). In each residual unit, we stack
three convolutional layers, each followed by a batch normalization layer and a
ReLU non-linearity layer. After constructing the residual unit, we gradually
stack 16 blocks to improve the network depth and finally form the deep residual
network. The backbone part ends with an average pooling layer and outputs a
2048-dimension feature vector.

For conducting multi-tasks, the network construction splits into two branches,
respectively targeting for tool presence detection and surgical phase recognition
tasks. Considering that tool presence is defined solely based on visual infor-
mation in the single frame, a fully-connected layer is directly connected to the
backbone network with a sigmoid layer followed to produce predictions for the
tools. As for phase recognition which relies on temporal information, we con-
nect the shared backbone layers with LSTM units in this branch. There are
several gates to modulate the interactions between the memory cell ct and its
environment. Hidden state ht retains the past information and supplies it to
the memory cell through the gates. The details are instantiated in the diagrams
in Figure 2. Different from the traditional linear models, such as HMM, our
employed LSTM takes full advantage of long-term temporal information (Don-
ahue et al. (2015)). Moreover, to capture richer dynamics in surgical videos, we
implement a distributed system enabling multiple GPUs computations, which
allows us to extend the length of input sequences easily.

The tool branch (with a fully-connected CNN layer) and phase branch (with
a RNN layer) are both seamlessly connected with the shared backbone convo-
lutional layers. Overall, we get a recurrent convolutional network to process
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multi-tasks on surgical videos (MTRCNet). The entire framework is trained
end-to-end supervised by both tool and phase annotations via joint learning.
By introducing temporal information in the whole training process, the frame-
work can make use of the complementary information of visual and temporal
space simultaneously.

3.2. Objective Functions for Joint Learning of CNN and RNN

We jointly learn the two tasks by training the framework with extracted video
clips. We denote each video clip input to the network by x={xt′ , . . . , xt−1, xt},
where xt′ is the first frame and xt is the last frame in this clip sample. The
number of frames in each video clip is represented as Nf . Meanwhile, we denote
the shared layers by U with weights β and its obtained feature vector for frame xt
is represented by gt. The stacked higher layers in two branches are respectively
represented by VT for tool and VP for phase with weights θT and θP , respectively.

We treat the tool presence detection as a multi-label classification problem,
given that different categories of tools may appear in the same frame. To this
end, we utilize multi-label logistic loss to calculate the classification error for
the tool branch. Denoting the C as the set of tool categories, the tool branch
loss function is defined as follows:

LT (xt;β, θT ) = −
∑
c∈C

(yTt,c log(p̂t,c) + (1− yTt,c) log(1− p̂t,c)), (1)

where yTt,c∈{0, 1} is the ground truth of tool presence for frame xt, which equals
to 1 when the c-th tool presents in the t-th frame; p̂t,c represents the prediction
of the c-th tool presenting in frame xt.

In the phase recognition task, we use softmax cross-entropy function to cal-
culate the loss of this multi-class classification task:

LP (xt;β, θP ) = − log p̂
z=yP

t
t (xt′:t, ht′:t−1), (2)

where p̂zt represents the predicted probability of frame xt belonging to the phase
class z; yPt is denoted as the phase ground truth label of frame xt; ht indicates
the updated hidden state calculated by LSTM with input frame xt and previ-
ous hidden state ht−1. With such recurrent module in the unified framework,
sequential dynamics in the video are jointly learned with visual representations.

Training the entire framework in an end-to-end manner enables to simul-
taneously and interactively recognize the tool and phase. With shared visual
features extracted by the earlier layers and joint optimization of two branches,
the learning of both tasks can benefit from each other. Specifically, according
to Eq.1 and Eq.2, the shared weights β in the earlier convolutional layers U
are optimized by both tool presence detection loss LT and phase recognition
loss LP . The gradients derived from tool branch can flow to the layers in phase
branch, and vice versa. More importantly, the recurrent module LSTM in phase
branch brings the temporal information to the unified network, which can be
jointly learned with the shared convolutional module. To this end, temporal
information not only has a positive effect on the phase recognition, but also
implicitly benefits the tool detection.
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3.3. Correlation Loss Modeling Relatedness between Tasks

In surgery, surgeons are requested to perform some specified operations with
corresponding tools in a specific surgical phase. Therefore, the tool presence and
surgical phase have well-defined prior correlations with clear domain knowledge.
In this regard, the classical multi-task learning network which learns the shared
features at low-level layers while uses task-specific high-level predictors, such as
our afore-defined MTRCNet, is suboptimal for this problem.

Previous multi-task method (Twinanda et al. (2017)) for surgical video anal-
ysis improves the traditional architecture by directly concatenating tool predic-
tions with visual features to conduct phase recognition. Instead, we design more
carefully about how to more effectively model the relatedness between the two
tasks. Specifically, we argue that we can also make reliable predictions for tool
presence, by only using the features from the phase recognition branch, as there
exist underlying mapping patterns between the two label spaces. Moreover, this
obtained probability distribution of tool presence inferred via the phase features,
can serve as a referenceable prior to regularize the predictions of the tool branch.
With this analysis, we construct a correlation cell, i.e., a mapping matrix with
128 × 7 dimensions, to translate the underlying correlation between these two
tasks. Practically, this mapping matrix is to linearly cast the high-dimensional
spatial-temporal features to a compact semantic space with the meanings of
surgical tools. Furthermore, the divergence of the probability distributions of
the tool usage is minimized via a derived correlation loss, penalizing the incon-
sistency between the tool branch and the inferred prior. The Figure 3 illustrates
the concepts of this process.

We choose the Kullback-Leibler (KL) divergence to establish this additional
regularization, with considerations on particular characteristics of our problem.
Usually, it is common to use mean square error (i.e., L2 Norm) to measure the
Euclidean distance of two vectors, especially in scenarios of regression problems.
However, measuring L2 Norm is inappropriate in our problem setting, as we are
not enforcing the equality of absolute values of probability predictions. We are
instead expecting to measure the distance of two probability distributions. The
cross-entropy loss is also not optimal, given that the two distributions are both
unfixed, which would result in failure in measuring the absolute difference if us-
ing cross-entropy loss. Meanwhile, the Earth-Mover distance (i.e., Wasserstein-1
distance), which is widely used and brings in stability for generative adversar-
ial networks, is not suitable for our task. It is good at tackling the situation
where the distribution’s support does not have non-negligible intersection, and
when KL-divergence is just infinite. In our setting, the two predictions are
highly correlated, such that KL-divergence can be smoothly used to measure
the difference between two distributions. In these regards, we derive the cor-
relation loss for our multi-task learning based on KL-divergence. We regard
the two distributions obtained from both branches as equally important, and
therefore, we compute the KL-divergence bi-directionally. We choose not to use
the Jensen-Shannon (JS) divergence (symmetrical distance), with consideration
that the distance is calculated towards the average of two distributions; such
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mixture has no intuitive meaning in the real-world application. Instead, the bi-
directional KL-divergence directly computes on the tool and phase distributions,
which is a more straight and stable implementation.

Formally, with rt denoting the features output from LSTM in phase branch
for frame xt, the tool prior probability p̃t,c can be inferred by forwarding rt to
the mapping matrixM with parameters θM, followed by a Sigmoid activation:

p̃t,c = Sigmoid(M(rt; θM)). (3)

We denote the predicted probability distribution of tool c obtained in the tool
branch by p̂′t,c = [p̂t,c, 1 − p̂t,c], and the prior inferred from the phase branch
by p̃′t,c = [p̃t,c, 1 − p̃t,c]. The correlation loss of each tool is calculated bidirec-
tionally with KL divergence as DKL(p̂′t,c‖p̃′t,c), and DKL(p̃′t,c‖p̂′t,c). Overall, the
correlation loss is the sum of those for all categories of tools:

Lco(xt;β, θT , θP , θM) =
∑
c∈C

(
1

2
DKL(p̂′t,c‖p̃′t,c) +

1

2
DKL(p̃′t,c‖p̂′t,c)),

DKL(p̂′t,c‖p̃′t,c) = p̂t,c log
p̂t,c
p̃t,c

+ (1− p̂t,c) log
1− p̂t,c
1− p̃t,c

.

(4)

By enhancing the consistency between the two predictions, the weights for each
task are not only optimized by corresponding ground truth, but also influenced
by the information from the other related task. In other words, the correlation
loss forces the phase branch to encode tool presence information into feature
vectors rt, and meanwhile it constrains tool branch to take into account phase
representation by enforcing the tool branch to learn from the perspective of
phase. In addition, the correlation loss provides additional regularization and
supervision to improve the interactions when updating the weights θT and θP in
two branches. By encouraging the joint optimization of tool and phase branch,
the correlation between the two tasks can be further captured and modeled in
the correlation cell. The updated correlation cell provides more accurate tool
prediction inference from phase branch, which forms a beneficial circulation for
the entire network training.
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3.4. Overall Loss Function, Training Procedure and Implementations

We denote Nc as the number of clip samples in the whole training database
and each sample contains Nf frames. The parameters in the entire framework
is represented by W = {β, θP , θT , θM}. The overall joint loss function then can
be formulated as:

L =
1

NcNf

Nc∑
i=1

Nf∑
t=1

(LT (xt,i) + λ1LP (xt,i) + λ2Lco(xt,i)) + λ3‖W‖22, (5)

where xt,i is the t-th input frame in the i-th video clip sample; the first three
terms represent tool detection loss, phase recognition loss and correlation loss,
respectively; the last term corresponds to the weight decay regularization. The
λ1, λ2 and λ3 are hyper-parameters to balance the loss. We employ stochastic
gradient descent method to jointly update weights of the entire framework. With
shared low-level feature extracted in earlier convolutional layers and high-level
constraint using correlation loss and mapping matrix, the dynamic interaction
between two branches can be facilitated during the joint training procedure.
To this end, our MTRCNet-CL can sufficiently leverage the close relatedness
between the two tasks, and hence improve the performance of both tasks.

To sufficiently take advantages of relatedness between the two tasks, it is
necessary to carefully design the training procedure. In practice, we exploit a
three-step strategy to train our framework. In step-1, given that the parame-
ter scale of backbone shared layers is much larger than that of two branches,
we initialize the weights of backbone shared layers with a pretrained model
on ImageNet (He et al. (2016)). The branch-specific weights [θT , θP ] are ran-
domly initialized with Xavier uniform initializer. Then the MTRCNet with two
branches is jointly trained with LT and LP . In step-2, we freeze [β, θT , θP ]
and solely train the mapping matrix θM from phase feature towards tool labels.
After obtaining a reliable mapping matrix which is able to construct the close
relatedness of two tasks, in step-3, we jointly optimize the entire parameters
of MTRCNet [β, θT , θP ] and the weights of mapping matrix θM towards Eq. 5,
i.e., the overall loss function L with correlation loss added. Note that when
the two types of annotations are unequal, we can divide the jointly training in
step-1 into two independently training process of tool and phase branch with
corresponding subsets, which can assist to make full use of the data annotations.
During the testing inference, the tool and phase predictions are output by the
two network branches. The tool predictions from the mapping matrix are not
utilized or averaged with ones from the tool branches, as the performances have
no obvious improvement when being evaluated on the validation dataset. As
shown in the experimental results, the designed training and testing strategy
delivers an outstanding performance.

In implementation, we first down-sample the original videos to enrich the
temporal information in one input video clip. We choose to down-sample the
video from 25fps to 1fps considering that tool presence is annotated in 1fps.
We resize the frames from the original resolution of 1920×1080 and 854×480
into 250×250 to dramatically save memory and reduce network parameters.
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The data augmentations with 224×224 cropping and mirroring is performed to
enlarge the training dataset. We train the model using back-propagation with
stochastic gradient descent, with the momentum of 0.9 and weighted decay of
5e−4. We initialize learning rate of shared convolutional layers as 5e−5 and two
sub-branch layers as 5e−4, and are divided by a factor of 10 when the validation
loss plateaus. Our framework is implemented based on PyTorch with 4 NVIDIA
Titan Xp GPUs for training. Such implementation of multiple GPUs enables
the input length of each video clip to reach 10 seconds and enables the batch
size to reach 400. It takes around 8 hours for training the entire framework. We
use one GPU configuration in test inference.

4. Experiments

4.1. Dataset and Evaluation Metrics

We extensively validate the proposed MTRCNet-CL method on a large pub-
lic surgical dataset, i.e., Cholec80 (Twinanda et al. (2016)). The dataset consists
of 80 videos recording the cholecystectomy procedures. The videos are obtained
at 25 fps and each frame has the resolution of 1920 × 1080 or 854 × 480. All
the frames are annotated with 7 defined phases by experienced surgeons. Tool
annotations, also consisting of 7 categories, are conducted at 1 fps re-sampling.
The tool presence is defined based on the visual information of a tool in the
single frame and annotated as a positive one if at least half of the tool tip is vis-
ible. The detailed definition and typical appearance of phases and tools in the
Cholec80 dataset are presented in Figure 1. Following the same procedure re-
ported in Twinanda et al. (2017), we split the dataset Cholec80 into two subsets
with equal size, with 40 videos for training and the rest 40 videos for testing.
All our experiments are conducted in online mode, i.e., without using future
information {xt+1, xt+2, ...} when making predictions for frame xt.

To quantitatively evaluate the performance of our method, we employ the
evaluation metrics utilized in Twinanda et al. (2017). For phase recognition, we
use precision (PR), recall (RE) and accuracy (AC) to validate the performance.
The PR and RE are computed in phase-wise, defined as:

PR =
|GT ∩ P|
|P|

, RE =
|GT ∩ P|
|GT|

, (6)

where GT and P represent the ground truth set and prediction set of one phase,
respectively. After PR and RE of each phase are calculated, we average these
values over all the phases and obtain the PR and RE of the entire video. The
AC is calculated at video-level, defined as the percentage of frames correctly
classified into the ground truths in the entire video. For tool recognition, the
performance is evaluated by mean average precision (mAP). We first calculate
the AP of each tool and average them over all the seven tools. In the following
result tables, we list the average and standard deviation values computed in all
the test videos, to show the mean and variation among different surgical videos.
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Table 1: Experimental results of ablation analysis for different network components.

Method Length(s)
Phase Tool

Precision Recall Accuracy mAP

SingleNet

4 81.3± 5.9 81.9± 9.3 85.3± 6.9

85.4± 8.3
6 81.3± 9.2 83.2± 6.8 85.7± 7.2

10 82.9± 5.9 84.5± 8.0 86.4± 7.3

MTRCNet

4 82.5± 5.9 82.2± 9.0 85.9± 7.6 86.4± 7.8

6 82.6± 6.4 84.1± 9.9 86.7± 7.2 86.5± 7.3

10 85.0± 4.1 85.1± 7.1 87.3± 7.4 87.5± 7.6

MTRCNet-CL 10 86.9± 4.386.9± 4.386.9± 4.3 88.0± 6.988.0± 6.988.0± 6.9 89.2± 7.689.2± 7.689.2± 7.6 89.1± 7.089.1± 7.089.1± 7.0

4.2. Effectiveness of Key Components of MTRCNet-CL

We conduct extensive ablation experiments to validate the effectiveness of
different key components in the proposed MTRCNet-CL model. In Table 1, we
list the results of three configurations: (1) we independently train two networks
for tool presence detection and phase recognition (SingleNet in Table 1) as the
baselines of our experiments, where we employ the same network architectures
as used in the MTRCNet-CL to guarantee the comparison fairness; (2) we train
the multi-task network with two branches in an end-to-end manner, but without
any correlation loss, i.e., MTRCNet which follows classical multi-task learning
practice; (3) we add the correlation loss to the multi-task learning framework to
unleash the relatedness between two tasks to a large extent, i.e., our proposed
MTRCNet-CL method.

Benefits of Video Length. The length of the input video clip has the bene-
ficial influence on the quality of the temporal features learned from the LSTM,
therefore it is considered to be a key factor for accurate phase recognition. In
order to lengthen the input video and thus enhance the temporal representa-
tion capability of our model, we implement our networks in a distributed way
with multiple GPUs. We first conduct experiments using three different input
lengths, i.e., 4, 6 and 10 seconds, with both SingleNet and MTRCNet to validate
the effectiveness of increasing the length of the input video.

In Table 1, we can observe that the phase recognition results produced by
the single phase network (SingleNet) gradually improve with the increase of
the video input length. In particular, the metric AC improves from 85.3% to
86.4% when the length increases from 4 seconds to 10 seconds, demonstrating
the importance of learning long-term temporal dependencies for phase recogni-
tion task. The beneficial impact can also be witnessed when we use multi-task
learning architecture (MTRCNet), increasing the AC of phase recognition from
85.9% to 87.3%. To take advantage of the temporal information from long video
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clips, we employ 10-second videos as inputs for the MTRCNet-CL.

Effectiveness of Multi-task Learning. For phase recognition task, compared
with the counterparts using SingleNet, our proposed MTRCNet, although with
absence of correlation loss, can achieve consistent improvements in all three eval-
uation metrics across all different input lengths. The PR, RE and AC of MTR-
CNet with 10-second video input reach 85.0%, 85.1% and 87.3%, respectively.
For tool presence detection task, MTRCNets also achieve better performance
compared with the independently trained network. In addition, it is observed
that the increase of input length of MTRCNets also benefits the results of tool
recognition task via the multi-task learning. The underlying reason is that,
the positive effect of longer temporal dependencies for phase recognition can be
transferred into the shared spatial-temporal features in earlier layers. By jointly
training with two branches, the more discriminative spatial-temporal features in
the shared layers can benefit the tool detection task to some extent. More im-
portantly, with correlation loss added to enforce the prediction consistency, the
results of our MTRCNet-CL for both phase and tool tasks are further improved,
peaking at 89.2% AC for phase and 89.1% mAP for tool. This demonstrates
that the high-level constraint assists the network to further capture the intrinsic
relatedness through penalizing the difference of prediction from two branches,
and then benefits the training of both branches. We also evaluate tool predic-
tions from the mapping matrix of our MTRCNet-CL, achieving 88.4% mAP. It
indicates that through leveraging the high correlation, we can infer a reliable
prior for tool from the phase features, forming a strong base for the correlation
loss calculation. We further average these two outputs for tool recognition, with
88.8% mAP performance obtained, which is not as good as the results directly
output from tool branch.

In order to more comprehensively analyze effectiveness of the proposed multi-
task learning scheme, we first visualize the confusion matrices of phase recogni-
tion results which can show the details in phase level. Specifically, the confusion
matrices of three methods, i.e., SingleNet, MTRCNet and MTRCNet-CL with
10-second video input, are illustrated in Figure 4. We omit the detailed phase
names and do further abbreviation, e.g. Phase 1 to P1, to increase the concision
and aesthetics of table. We can observe that from (a) to (c), the probability per-
centages on diagonals (recall) tend to increase with misclassification gradually
decreasing. Particularly, it is clearly shown that the condition of incorrectly rec-
ognizing P1 into P2, P6 or P7 is consistently alleviated by using our multi-task
learning scheme. The same situation can also be witnessed in P5 recognition
process from Figure 4. These observations demonstrate that joint training with
tool annotations is of great benefit to increasing recognition performance of some
phases. Apart from low-level features shared in the early convolutional layers,
our high-level correlating mechanism is capable of reinforcing the interaction
between two branches and can further enhance the leverage of both annotations
and improve the performance.

We further draw bar charts (see Figure 5) in order to detailedly illustrate the
results of PR and RE in each phase-level and AP in each tool-level. Tool names
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Figure 4: Confusion matrices visualized by the color brightness of three methods (a) SingleNet,
(b) MTRCNet, and (c) MTRCNet-CL. In each confusion matrix, the X and Y-axis indicate
predicted phase label and ground truth, respectively; element (x, y) represents the empirical
probability of predicting class x given that the ground truth is class y; the probability number
on diagonal is the recall for each surgical phase.
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Figure 5: The bar chart results of (a) Precision and (b) Recall in phase-level and (c) Aver-
age Precision in tool-level of three methods: SingleNet, MTRCNet, and MTRCNet-CL. The
standard deviations are shown through the error bars in each chart.

are also abbreviated, for example, from Tool 1: Grasper to T1. It is observed
that compared with other two schemes, the MTRCNet-CL improves the PR
performances in the most phases, especially in P3. Similarly, RE performances
in P1 and P5 have especially significant increase by using MTRCNet-CL. For
AP, the MTRCNet-CL dominates other two schemes across all the seven tools.

4.3. Detailed Ablation Study of Mapping Matrix and Correlation Loss

The learned mapping matrix infers the tool predictions from the features
in phase branch, and plays the key role on the calculation of the correlation
loss. Therefore, the configurations of mapping matrix, such as training strategy,
position and mapping direction, have an important effect on the effectiveness
of the correlation loss and indirectly determines the final performance of our
MTRCNet-CL. In this regard, we establish several schemes to obtain a com-
prehensive insight on how the mapping matrix influences the interaction of the
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Table 2: Experimental results of ablation analysis for mapping matrix and correlation loss.

Different Settings
Phase Tool

Precision Recall Accuracy mAP

Training strategy 1 (TS1) 80.1± 7.1 79.2± 10.4 83.4± 8.5 85.1± 8.0

Training strategy 2 (TS2) 85.5± 4.6 85.6± 7.6 87.8± 7.1 88.1± 7.2

Mapping in label space 83.5± 5.8 84.5± 8.1 87.1± 7.3 86.8± 7.1

Mutual mapping matrix 84.7± 6.2 85.5± 8.9 87.4± 7.9 87.1± 7.7

Ours (MTRCNet-CL) 86.9± 4.386.9± 4.386.9± 4.3 88.0± 6.988.0± 6.988.0± 6.9 89.2± 7.689.2± 7.689.2± 7.6 89.1± 7.089.1± 7.089.1± 7.0

two tasks. All experiments have the same network architectures and data aug-
mentation strategies for fair comparison. The experimental results are listed in
Table 2.

Different Training Strategies. We first investigate the influence of training
strategies with three schemes: (1) jointly train the two branches with mapping
matrix (TS1); (2) train the two branches firstly, next freeze two branches and
train mapping matrix, and finally freeze the mapping matrix and continue to
train two branches (TS2); (3) train two branches firstly, then freeze two branches
and train mapping matrix, and finally jointly train the entire network, i.e. our
MTRCNet-CL (see Section 3.4 for more details). It is observed from Table 2
that compared with TS1, the training scheme TS2 and ours both significantly
improve the AC score for phase recognition and mAP score for tool presence
detection. The difference between these schemes is that the latter two have a
separate mapping matrix pre-training step, which provides a relatively better
initialization before joint training. This observation validates that balancing
the learning difficulties of different components in the network to a comparable
level helps to sufficiently leverage the benefit of correlation loss. In addition,
MTRCNet-CL achieves marginally better performance over training strategy
TS2. The underlying reason is that MTRCNet-CL unfreezes mapping matrix in
the final stage and allows a joint training process between the mapping matrix
and two branches. Mapping matrix then can be optimized by the loss from two
tasks through the back-propagation procedure. In the three-step training strat-
egy of our MTRCNet-CL, the performances for tool recognition reach 87.3% in
step-1 (from tool branch), 86.9% in step-2 (from mapping matrix), and increase
to 89.1% in the final step (from tool branch). Such results demonstrate that
with effectively leveraging the high correlation between two tasks, a reliable
prior can be obtained based on the phase feature. In addition, the designed
correlation loss can further encourage the interaction between two branches,
benefiting the network to model more powerful spatio-temporal feature.

We further carefully study the training processes of the three training strate-
gies and visualize the loss plots in Figure 6. From (a) and (b), we observe that
compared with step-1 of TS2 and MTRCNet-CL, both tool and phase losses of
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(a) TS1 (d) step3 of TS2(b) step1 of TS2 and MTRCNet-CL (c) step2 of TS2 and MTRCNet-CL
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Figure 6: Visualization of loss curves from different steps of (a) TS1, (b c d) TS2, and (b c e)
MTRCNet-CL. The loss curves of each training strategy in the last step are shown together
in (f) for the clearer comparison. (g) is presented to show a closer look at the end of training
process (red region of (f)).

TS1 decrease slower when we attempt to jointly train the whole network with
the mapping matrix at the beginning, which further leads to the higher loss at
the end of the training process (see (f) and (g)). It is observed that from (d) and
(e), the correlation losses consistently decrease with the tool and phase losses
going down, demonstrating the beneficial complement between the learning of
tool, phase branches and mapping matrix. In addition, our MTRCNet-CL with
the designed multi-step training strategy converges much faster than using TS2,
and achieves lower values of all the three losses (see (f) and (g) for the clearer
comparison). It verifies the effectiveness and importance of our strategy design.

Mapping in Label Space. We then set up the mapping matrix in label space,
i.e., mapping the predicted 7-bit vector of phase recognition (from phase branch)
to tool prediction. In this regard, the ground truth of tool and phase correlation
can be utilized to initialize the mapping matrix. However, in Table 2, we can see
that MTRCNet-CL still achieves much better performance than the label-space
mapping, increasing PR and RE around 3%. The difference between these two
settings is that MTRCNet-CL is trained to learn a phase-feature to tool-label
mapping matrix, while the other is to learn a phase-label to tool-label map-
ping matrix. The latter utilized space is too compact and the learned mapping
matrix is too sparse, since only one or two tools appear in each phase and the
probabilities of the absent tools are around zero (see the ground truth correla-
tion (a) in Figure 7). Instead, the learned matrix of MTRCNet-CL can leverage
richer information with more details in semantic feature level, and therefore can
unleash the effectiveness of correlation loss.

Using Mutual Mapping Matrix. We practically explore whether also adding
a mapping matrix from tool branch to phase branch, i.e., using mutual mapping
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Figure 7: Visualization of correlation between tool and phase in Cholec80 dataset ((a) GT),
and constructed correlations by our methods (b) SingleNet (c) MTRCNet and (d) MTRCNet-
CL; in each correlation, element (x, y) represents the empirical probability of tool x presenting
in phase y; the sum of probability numbers in each row equals to one. The discrepancies
between counted numbers in Cholec80 dataset and those predicted by SingleNet, MTRCNet
and MTRCNet-CL are illustrated in (e), (f) and (g), respectively; the total number of tool h
appearing in phase k in Cholec80 minus the total number in predictions is shown in element
(h, k) of each matrix; these difference values are normalized to the range from zero to one.
’T-’ denotes the situation that no tool appears in the frame.

matrice between two branches, is useful. Table 2 shows that our MTRCNet-CL
consistently surpasses the scheme of mutual mapping, improving all the evalua-
tion matrices around 2%. The difference between the two schemes is the network
additionally uses the mapping matrix from tool branch to phase predictions or
not. Since one tool may appear in different phases, for example, T1 has the
high probabilities of appearance in all the phases, see Figure 7 (a), the mapping
from the tool branch fails to provide an ideal prior and may even cause confusion
in the joint learning. In this regard, the configuration of our MTRCNet-CL is
practically optimal to leverage the correlation loss. Adding the extra mapping
matrix from the tool branch to phase branch is practically unnecessary.

Visualization of Learned Correlations of Two Tasks. To intuitively show
the correlation existing in two tasks and provide the insight of what correlations
the networks learn, we compute the correlations between phases and tools and
visualize them. The Figure 7 (a-d) visualizes the phase-tool correlation ma-
trix for (a) ground truth (b)SingleNet predictions (c) MTRCNet predictions (d)
MTRCNet-CL predictions through calculating the co-occurrence between the
tool and phase. The green and red color brightnesses indicating the strength of
correlation for a particular phase-tool pair. For example, we easily observe that
there exist high correlations in the cholecystectomy surgical procedure, demon-
strating our idea of leveraging the relatedness to improve performance has funda-
mental support. With multi-task learning, both MTRCNet and MTRCNet-CL
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are able to reconstruct the correlations quite well, with consistency to the pat-
terns in the ground truth. To further clearly demonstrate the effectiveness of
using correlation loss to capture the relatedness between tool and phase, we vi-
sualize the differences between the ground truth and the predictions in Figure 7
(e-g), with the blue color brightness indicating strength. Note that the lower
value with lighter color indicates a higher performance. We can find that there
exist largest differences between the correlations from two separately trained
SingleNets and the ground truth. The visualized difference map is noisy and
scattered with large values, e.g. T1 in P6, T4 and T5 in P3. For two multi-
task learning networks, it is observed that for those close correlations with high
probabilities, such as T3 in P2 and T1 in P4 (see the ground-truth correlation
in (a)), MTRCNet-CL with explicitly defined correlation loss can penalize more
incorrect predictions than solely using multi-branch network (MTRCNet). This
observation clearly presents the efficacy of correlation loss, with insight to retain
such correlation in predictions for related tasks.

4.4. Comparison with State-of-the-art Methods

We compare the performance of our MTRCNet-CL with several well-known
or the state-of-the-art approaches; most of the results on the same dataset are
reported in Twinanda et al. (2017). As for tool presence detection, we compare
the results of our method with three approaches. The first one is deformable
part model (DPM). This method employs three components to model each tool
and uses HOG features to represent the images. The second one is 8-layer
CNN (ToolNet) which is trained in a single-task way to solely perform the tool
presence detection task. The third one is a 9-layer multi-task network which
leverages both tool and phase annotations (EndoNet). This method is regarded
as the state-of-the-art method for tool presence detection task in literature.

As for phase recognition, the first four comparison methods input different
visual features followed by hierarchical HMM to refine the results. They consist
of 1) binary tool usage information generated from the manual annotations;
2) bag-of-word handcrafted features followed by canonical correlation analysis
(CCA); 3) features extracted by 9-layer CNN which solely utilizes the phase
annotations (PhaseNet); and 4) features extracted by EndoNet. In addition,
Jin et al. (2018) proposes to seamlessly integrate CNN and LSTM to jointly
learn spatial and temporal feature (SV-RCNet). Twinanda (2017) presents to
replace HHMM by LSTM to enforce the sequential constraints on the visual
feature from EndoNet (EndoNet+LSTM), which achieves the state-of-the-art
performance on phase recognition. The comparison results of tool detection
and phase recognition are shown in Table 3 and Table 4, respectively. We omit
the standard deviation in these tables as not all referenced papers reported that.
F1 scores are calculated to provide the overall results of phase recognition task
for better comparison.

In these two tables, we can find that all the CNN-based methods, includ-
ing our MTRCNet-CL, achieve much higher performance than those approaches
based on the handcrafted features, demonstrating that deep CNNs can extract
more discriminative representations. Compared with two independently trained
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Table 3: Average precisions for recognizing the seven tools (rows) using different approaches
(2nd to 5th columns).

Tool DPM ToolNet EndoNet∗ Ours∗

Grasper 82.3 84.7 84.884.884.8 84.7
Bipolar 60.6 85.9 86.9 90.190.190.1
Hook 93.4 95.5 95.695.695.6 95.695.695.6
Scissors 23.4 60.9 58.6 86.786.786.7
Clipper 68.4 79.8 80.1 89.889.889.8
Irrigator 40.5 73.0 74.4 88.288.288.2
Specimen bag 40.0 86.3 86.8 88.988.988.9
Mean 58.4 80.9 81.0 89.189.189.1

Note: the ∗ means the methods with multi-task learning.

Table 4: Phase recognition results using different approaches (rows).

Methods Accuracy Precision Recall F1 Score

Binary Tool 47.5 54.4 60.2 57.2
Handcrafted+CCA 38.2 39.4 41.5 40.4
PhaseNet 78.8 71.3 76.6 73.8
EndoNet∗ 81.7 73.7 79.6 76.5
SV-RCNet 85.3 80.7 83.5 82.1
EndoNet+LSTM∗ 88.6 84.4 84.7 84.5
Ours (MTRCNet-CL)

∗
89.289.289.2 86.986.986.9 88.088.088.0 87.487.487.4

Note: the ∗ means the methods with multi-task learning.

networks, i.e. ToolNet and PhaseNet, our method achieves striking improvement
in both tasks, demonstrating that multi-task learning strategy is beneficial for
both tool presence detection and phase recognition tasks of surgical video. Our
MTRCNet-CL also outperforms another multi-task based method, i.e. EndoNet
by a large margin. These comparison results verify that with low-level spatial-
temporal feature sharing by CNN and RNN modules, and high-level constraint
by correlation loss, our MTRCNet-CL can sufficiently facilitate the interaction
of two branches and therefore catch the close relatedness of two tasks. More-
over, our approach achieves better results than the two state-of-the-art meth-
ods, in particular, boosting the tool presence detection results from 81.0% to
89.1% and F1 score of phase recognition from 84.5% to 87.4%, which corrob-
orates the effectiveness of recurrent convolutional joint leaning and correlation
loss. The detail results for all the seven tools are also reported in Table 3; our
approach achieves superior performances over other methods in most tool cat-
egories, especially for T4 Scissors (improving AP over 25% compared with the
state-of-the-art method).

4.5. Qualitative Results

We present results of tool and phase recognitions in some challenging cases
to illustrate the effectiveness of the proposed method, as shown in Figure 8.
Although the partial appearances and overlap of multiple tools increase the
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Figure 8: Typical results of the proposed MTRCNet-CL for tool presence detection and phase
recognition. For tool, the labels and the probability predictions towards ground truths are
indicated through white arrows; and for phase, they are present below each frame.

recognition difficulty (case (a), (b), (d) and (e)), our method can achieve rather
high prediction confidence towards ground truth. For example, T2 Bipolar in
case (b) and T1 Grasper in case (d) are easy to be ignored. However, our
MTCNet-CL can witness them through the discriminative spatial-temporal fea-
ture and constructed correlation in the learned mapping matrix. Our method is
robust and able to distinguish the right phases though there exists a high intra-
class variance (case (a), (b) and (c)). Our method can identify the tools which
are not normally present in some phases. For example, T2 Bipolar is hardly
utilized in Phase2 (case (b)) while T6 Irrigator is rare to appear in Phase4 (case
(d)). In other words, although the correlation between tools and phases may
be unstable and complicated, our method is capable of addressing the obstacles
brought from that. In addition, our network can reduce the effect of the blur
scene and noise (case (c) and (f)).

We further illustrate tool and phase recognition results of several complete
surgical videos in Figure 9 and Figure 10, respectively. From Figure 9, we
observe that the presence of tool is fitful and inconsistent under the camera,
even within several adjacent frames. This phenomenon may be caused by the
quite rapid operation action and the unstable surgical camera. Even so, our
method can precisely detect different tool presences during the whole surgical
procedures, demonstrating the efficacy of our multi-task learning strategy. It
can be clearly observed from Figure 10 that even without any post-processing
method, our MTRCNet-CL can produce the smooth phase predictions with the
jointly learned spatio-temporal features. Moreover, we find that our method
can accurately identify the phase transition frames, which plays a very valuable
role for many computer-assisted and robotic surgery to automatically adjust the
configurations and parameters to go into next phase.
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(a) 51min 40s (b) 56min 53s

Figure 9: Color-coded ribbon visualization of tool predictions from MTRCNet-CL (above)
and ground truth (bottom) in two complete surgical videos. In each case, we show the seven
tool presence with different colors and no tool appearance with blank. The horizontal axes
indicate the time progression of different surgical procedure, which are scaled to the same
length for better visualization.

(d) 52min 07s(c) 17min 26s

(b) 76min 15s(a) 22min 36s

P4P1 P2 P3 P5 P6 P7

Figure 10: Color-coded ribbon illustration of phase during four complete surgical videos, whose
horizontal axis represents the time progression. In each case, we present the recognition results
from our MTRCNet-CL (above) and the ground truth (bottom). We scale the temporal axes
for better visualization as the different duration in these cases.

5. Discussion

Tool presence detection and phase recognition have become a key component
when developing the context-aware systems for surgical process monitoring and
surgeon scheduling. In this paper, we present a multi-task network supervised
by both annotations to simultaneously address two tasks. With the convolu-
tional backbone shared in the earlier layers, CNN in the tool branch and RNN
in the phase branch can be jointly optimized. The entire framework is opti-
mized in an end-to-end manner which introduces the temporal information in
the whole training process. Extensive experiments have demonstrated effective-
ness of this carefully architectural design for both tasks. More importantly, we
propose a new correlation loss to provide the additional supervision by learning
a mapping matrix. This mechanism can reinforce the interaction between two
associated tasks and further enhance the high relevancy learning. The perfor-
mance improvement in the experimental results demonstrates the advantage of
this additional penalization for capturing the task correlation. A set of tai-
lored training schemes of mapping matrix is designed to yield the maximum
efficacy of the correlation loss for tackling both tool and phase tasks. To this
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end, our work not only can encourage researchers to simultaneously address the
associated tasks in surgical videos, but also can inspire them to develop some
strategies to facilitate the leverage of correlation for the analysis of surgical
videos, as well as other interconnected multiple tasks.

According to our multi-step training strategy, in step-1, though there exist
the shared earlier layers, the phase branch is jointly trained with tool branch
towards the phase annotation. In step-2, the branch parameters are frozen and
only the mapping matrix is trained from the modeled phase feature towards tool
labels. Based on these two steps, the pathway from the phase branch focuses on
the phase recognition tasks and models the spatio-temporal feature to increase
the phase distinctiveness. Through the inherent high correlation learned in the
mapping layer, the tool presence can be roughly inferred and derived from the
modeled phase feature. Therefore, we regard the output of the mapping matrix
from phase branch as an additional prior when training the whole network in
step-3. During the step-3, we set hyper-parameters of phase loss and correlation
loss as 1 and 0.5 respectively, to balance the loss and make the phase branch still
bias to the phase recognition task. In this regard, the probability distributions
obtained by the mapping matrix diverged from phase branch can still serve
as a reference to tool recognition task. In addition, the additional correlation
loss have two more effects. Firstly, the two outputs to calculate correlation
loss are from two possible pathways to produce tool predictions. Although one
is mainly based on the tool feature and the other is mainly based on phase
feature, the correlation loss between them indeed can play the ensemble role to
enforce the similarity, which enhances the interaction between the two branches.
Secondly, in step-3, LSTM weights can also be trained for tool recognition, which
introduces some beneficial temporal information for the tool task in the form of
soft label through the mapping matrix.

Although temporal information plays an essential role in the video analysis
tasks, LSTM unit is not employed in tool branch based on our careful con-
sideration on the task definition and setting. In the surgical video analysis
community, the clinical physicians define the tool presence solely based on one
frame scene without looking at adjacent frames (Twinanda et al. (2017)). It
is annotated as a positive one only if at least half of the tool tip is visible. In
other words, when a tool is partially obscured in a single frame, once the visible
part is less than a half, although the tool present in the surrounding frames, it
will be regarded as a negative one. In addition, the actions (e.g., hooking) in
surgical videos are very rapid. Under the camera, the presence of tool is fitful
and inconsistent, even within several adjacent frames. Hence, using LSTM for
tool detection maybe not help improve the performance too much. We have
conducted the preliminary experiments on this configuration with no obvious
improvement shown in final performance, and even encountering a more dif-
ficult training process and suffering from longer training time. Therefore, we
choose to simplify the network architecture for computational resource saving
and easier network training.

Consistency enhancement can dramatically increase the performance of phase
recognition based on the prior knowledge of surgical operations. Therefore, some
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works proposed to use some simple yet effective post-processing strategies to
boost the final results, such as averaging smoothing in Cadene et al. (2016) and
prior knowledge inference, called PKI, in our previous work (Jin et al. (2018)).
In this work, all the results are purely predicted by our end-to-end network
(MTRCNet-CL) without using any post-processing strategies. Nevertheless, we
have also performed the experiment to investigate how PKI affects the results of
our method, with PR, RE and AC peaking at 91.6%, 90.1 and 93.3%, surpassing
results of 90.6% PR, 86.2% RE and 92.4% AC in Jin et al. (2018).

One main concern in deep learning (a data-driven methodology) is the lack
of available data, especially for the surgical video. The multi-task learning of
tool and phase recognition requires the simultaneous annotations for both tasks
on the same dataset, which restricts the development to a certain extent. Fortu-
nately, most works regard it as a worthy trade-off: some label the two tasks with
utilizing binary tool usage to address phase recognition task (Padoy et al. (2012);
Yu et al. (2019)); others are dedicated to establishing more advanced multi-task
strategies (Zisimopoulos et al. (2018); Nakawala et al. (2019)). In addition, more
relevant datasets begin to be released for public usage, which alleviate the anno-
tation problem to a great extent (Nakawala et al. (2019); Stefanie et al. (2018)).
We choose a large-scale and well-organized dataset (Cholec80) to validate our
MTRCNet-CL. The outstanding results on this typical dataset demonstrate
the effectiveness of our method for surgical tool and phase recognitions. More
importantly, compared with other aforementioned multi-task methods, our net-
work has the capability to be extended for semi-supervised learning with less
annotations. The correlation loss can be utilized as an unsupervised loss for the
unlabeled data. We will explore this promising direction in the future.

Our proposed method can recognize tool and phase at a quick speed (around
0.3s per frame with one GPU), which can be applied in the real-time context-
aware system and assist surgeons in the real-world surgical operating, including
warning generating, process monitoring as well as staff scheduling. Such real-
time notification and online assistance systems have large potentials to become
the key component in the modern operating rooms, especially with the gradual
development of robotic minimally invasive surgery. In addition, automatic tool
presence detection and phase recognition of surgical videos play the significant
roles in some postoperative applications, such as surgical report writing, video
database indexing, skill assessment and postoperative review. The proposed
MTRCNet-CL is general enough that not only can analyze the cholecystectomy,
but also can be extended to address multiple tasks in other types of surgical
videos, such as cataract surgery, robotic surgery, etc. In essence, there also
exist high correlations between tool usage and surgical activity in other surgical
videos. As long as there exist high correlations in the videos, the mapping
matrix can be learned and the proposed correlation loss can be leveraged to
improve the performance by penalizing the inconsistency.
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6. Conclusion

In this paper, we present a novel architecture with correlation loss (MTRCNet-
CL) to simultaneously detect surgical tool and recognize phase. Specifically, the
designed architecture shares the features in the early layers and holds respective
higher layers for corresponding tasks. LSTM is employed in the phase branch
to model sequential dependencies. More importantly, the correlation loss with
learned mapping matrix is proposed to enforce the consistency of predictions of
two tasks. To this end, our framework is able to sufficiently capture the close
relatedness by encouraging the interaction of two branches. Extensive experi-
ments have validated the effectiveness of our method on a large surgical video
dataset, outperforming the state-of-the-art methods.
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